java program for finding gcd ,lcm ,xor and addition (without using operators )

import java.util.*;

class LCM
{
 public static void main(String args[])
 {
   Scanner s=new Scanner(System.in);
   int k1 = s.nextInt();
   int k2= s.nextInt();
 
   int gcd=hcf(k1,k2);
   System.out.println(" hcf of these two number is "+gcd);
 
   int lcm=(k1*k2)/gcd;
   System.out.println(" lcm of these two number is "+lcm);
 
   int xor=k1^k2;
   System.out.println(" xor of these two number is " +xor);
 
   int addd=Add(k1,k2);
   System.out.println("addition method without using arthemetic operators is "+addd);
 
 
 }

 static int hcf(int a,int b)
 {
int r=a%(b);
int diviser=a;
int divident=b;
int quotient;
while(r>0)
{
  quotient=divident/diviser;
r=divident%diviser;
divident=diviser;
diviser=r;
}
return divident;
 }

 /*
 Sum of two bits can be obtained by performing XOR (^) of the two bits. Carry bit can be obtained by performing AND (&) of two bits.
Above is simple Half Adder logic that can be used to add 2 single bits. We can extend this logic for integers. If x and y don’t have set bits at same position(s), then bitwise XOR (^) of x and y gives the sum of x and y. To incorporate common set bits also, bitwise AND (&) is used. Bitwise AND of x and y gives all carry bits. We calculate (x & y) << 1 and add it to x ^ y to get the required result.
*/

  static int Add(int x, int y)
  {
    // Iterate till there is no carry
    while (y != 0)
    {
        // carry now contains common set bits of x and y
        int carry = x & y;

        // Sum of bits of x and y where at least one of the bits is not set
        x = x ^ y;

        // Carry is shifted by one so that adding it to x gives the required sum
        y = carry << 1;
    }
    return x;
  }


}

Comments

Popular posts from this blog

Getting Started With MEAN App Development with AngularJs , ExpressJs , NodeJs and MongoDB.

B. Dreamoon and WiFi :calculate no. of ways : recursive solution (branch and bound )

A. Dreamoon and Stairs : minimum steps to reach : recursion solution.